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Multi-component solid solution hardening 
Part 1 Proposed mode/ 

L. A. GYPEN, A. DE RUYTTERE 
Departement Metaalkunde, Katholieke Universiteit Leuven, Belgium 

A relation for multi-component solid solution hardening has been derived: if the binary 
athermal or thermal solid solution hardening of v dilute and random distributions of 
solute atoms i in the base metal is given by Ari = RiC~, and if these v distributions are 
present together in the base metal without interacting with each other, the multi- 
component solid solution hardening is given by: 

A m o r e  general  re la t ion  is also der ived fo r  t he  case where  t he  so lu te  a t o m s  inf luence  b o t h  

t he  t he rma l  and a the rma l  c o m p o n e n t  of  the  yield stress. The  model  can be e x t e n d e d  for  

w h e n  d i f f e r en t  so lu te  a t o m s  in te rac t  wi th  each  o ther .  A re la t ion  is also p roposed  fo r  the  
case whe re  each  solute  has a d i f f e ren t  c o n c e n t r a t i o n  e x p o n e n t  q~. The  a g r e e m e n t  o f  the  

mode l  wi th  e x p e r i m e n t a l  results  is cons idered  in Part  2. 

1. Introduction 
Although binary solid solution hardening (SSH) 
has been the subject of  many theoretical studies, 
only a few investigators have explored the problem 
of multi-component SSH. The purpose of the pre- 
sent article is to predict the multi-component SSH 
when the binary SSH caused separately by each of 
the solutes is known. 

Before considering the model in detail it is 
necessary to take into account the fact that the 
flow stress r should be divided into two 
components: the athermal component or internal 
stress r~, and the thermal component or effective 
stress r*, the latter depending on temperature T 
and deformation velocity "1"[1 ]: 

r = r*(T, 7") + ru. (1) 

If only the concentration dependence of the 
strengthening effect is taken into account, several 

binary SSH theories and experiments (e.g. [ 2 -4 ] )  
result in one of the following three equations: 

Ari  = R i C  q (2) 

A'ci = K i C  + P i ( T , ' y ' ) C ~  (3) 

= Ric ,i (4) 

where At/ is the increase of  the flow stress due to 
the solute element i with concentration C/; q, n 
and m are constant concentration exponents inde- 
pendent of the solute; qi is a concentration 
exponent with a different value for each solute i; 
the coefficients R i, K i and Pi are independent of 
the concentration C/. 

The ternary SSH dx~', when two atom distri- 
butions with different obstacle strengths are added 
to a pure metal, has been calculated by a few in- 
vestigators [ 2 , 5 - 8 ] .  Their results are given in 
Table I, in which Equation 13 can be derived as 
the asymptotic solution* of the set of  multi- 

* At small concentrations,strong interactionsand relatively small interaction widths, Gfo~,/Wv is much greater than 
unity (asymptotic behaviour) and Pv is approximated either by Pv ~ CuGfov~ (~)lwu or by Pv = 0 substitution of 
these expressions for Pv in the set of multi-component equations derived from Labusch [2] yields Equation 13. (Pv is 
the distribution function for the spacings of the obstacles v from the unit length of dislocation. These obstacles are 
characterized by their individual densities Cu, their interaction forces fou ~ (~), and interaction widths w v .g is the 
solution of the appropriate Green's function.) 
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T A B L E I Ternary solid solution hardening theories 

Reference Binary SSH Ternary SSH Comments 

- - A r  = A r  1 + A %  

Koppenaal and 
Kuhlmann Wilsdorf [5] Ar  i ~ Cy 2 Ar = (Ar~ + ar~) va 

Foreman and Makin Ct C a 
[6] ~xr i ~ C~ m Ar = A r ( 1 ) ~  + Ar(2)~ 7 + Ca (a) 

Foreman and Makin 
[6] Ari ~ CI t2 Ar  ~. Ar  I + A% (b) 

a ~  = ( a ~  + z x ~ )  ~'a (c) 

Rufand Koss [7] Ar i = RiCF ~ 

(Ar~ + ar~) *'= < a r  < a r  1 + a% (d) 

Ar = [R~C~ +(R~  + R ~ ) C , C =  +R~C~] 1/a (e) 

Labusch [2], Cf4/iawl'*C~ ,3 AT 3'2 = Ar l  ,~ + Ar~ ̀ 2 ( f ,g )  
Friedrichs and Ari - b(4T) ~/3 
Haasen [8] 

derived from Cf~: 3 w y  a C~ ̀~ C(:~1 C 1 + : ~  C~ ) (f, h) 
Labusch [2] Ari - b(4T)U a Ar = 2 ~/a b(4T)l/3 f~ t  C1 + f ~ ~ 

W 1 W a 

Fredfichs and 3/2 i/2 (f) 
Heasen [8] A r  i -- 2 b x / T  h r  = 2bx /T(C~fo  I + Cafo2)w2 

Comments  
(a) Law of mixtures: AT i is the strengthening effect when all solute atoms are of type i; 
(b) when a few strong obstacles are introduced among many weak ones; 
(c) for two fairly weak obstacles; 
(d) for two strong obstacles; 
(e) for a mixture of medium and weak obstacles; 
(t) w i = interaction width, foi = maximum interaction force, T = line tension, b = Burgers vector; 
(g) w 1 = w 2 = w is assumed; 
(h) w I --- w 2 = w is not assumed. 

component  equations given by Labusch [2]. If 
wl = w 2 ,  Equation 13 reduces to Equation 12. 

The relations for mult i-component SSH, 

derived in the present paper, are restricted to the 

common case in which the binary SSH is given by 
Equation 2, 3 or 4. 

tions. The case where interactions are present is 

considered in Section 4. 
Consider v distributions of solute atoms i, of  

which the athermal strengthening effect, when 

each solute is separately present in the solvent, is 

given by: 

2. Proposed model 
The quite different SSH equations shown in 

Table I result from different physical assumptions 
and mathematical approximations. Therefore, in 

the present mult i -component  model only a mini- 
mum of physical assumptions are made in order to 
not  restrict the general applicability of the derived 

equations. The proposed model first assumes the 
distributions of solute atoms in the solvent to be 
(1) dilute, (2) statistical, and (3) without interac- 

~ z u i  = K i C p  i = 1 . . .  ~. ( 1 5 )  

For SSH, the distributions can be characterized 
by three parameters: the concentration of solute 
atoms Q,  the strenghtening coefficient K i ,  and the 
concentration exponent n, the latter being as- 
sumed the same for all solutes. 

To find the hardening when different solutes 

are present simultaneously, a fictitious solute ] 
with strengthening coefficient Kj, concentration 
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exponent n and the following athermal strength- 
ening equation is considered: 

/,T.j = & q " .  (16) 

The following equivalent concentrations of solute 
atoms/" are defined: 

( t  TM Ki  
CeqJi ~--- ~'~Jl C/ i = 1 . . .  u. (17)  

From Equations 15 and 17 it follows that: 

A r u i  = K i C [ '  = " i = v .  K j C e v j i  1 . . . 
(18) 

This means that the athermal stress caused by 
C~ solute atoms i with strengthening coefficient K i 

can be thought to be produced by Ceoi i  solute 
atoms ] with strengthening coefficient K i, 

It is now assumed that the v distributions 
produce the same strengthening effect as one stat- 
isitical distribution of solute atoms of type ] with a 
concentration C e q j  equal to the sum of the 
equivalent concentrations Cec~.  The total hard- 
ening is then given by: 

A r t ,  = Ceqj  �9 (19) 

The graphical interpretation of the model is shown 
in Fig. 1 for the case of a ternary solid solution 
( v = 2 ) .  Combining Equations 17, 18 and 19: 

A r  u = K I / " G  (20) 

1/n~ n 

It should be noted that the strengthening factor 
Kj does not appear in Equations 20 and 21. The 
final result is independent of the choice of the 
reference distribution. A similar equation can be 
derived for the thermal hardening. It is presented 
together with Equation 21 as Equation 22 in Table 
II. 

Figure 1 Athermal strengthening effect versus concen- 
tration for the proposed model for athermal ternary solid 
solution hardening when the solutes have a common 
concentration exponent and no interactions. 

Ceq.i = Ceq]l + Ceq.i 2 

The athermal and thermal strengthening effects, 
given by Equations 21 and 22 respectively, are 
additive according to Equation 1. Consequently, 
the total SSH is given by Equation 23 (see Table 
II). Equations 21 and 22 are of the same math- 
ematical form. If the hardening is only either 
thermal or athermal and given by Equation 2, the 
strengthening effect in a multi-component solution 
is given by: 

1 ~ 
A r  = Ar~/q . (24) 

For ternary SSH, Equation 24 becomes 
Equation 5 if q = l ,  Equation 6 if q = � 8 9  and 
Equation 12 if q = ~. Equations 5, 6 and 12 have 
also been derived by Mizia and Koss [9] for the 
special case where the strengthening coefficients 
are identical. Both types of solute atoms then 
behave identically: 

A r l  = RC~ 

AT2 = RC~ 
and 

Ar = R ( C ,  + G )  q = [Arl 'q + Ar~'q] ". 
(25) 

T A B LE I I Equations derived for multi-component solid solution hardening 

Binary SSH Multi-component SSH 

=  ,cr = ~ (21)  
i 

I )" Ar i = KiC ~ + Pi(T, ~')C m s = A t  + NAr * ' 'm (23) 
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3. Extension to different concentration 
exponents 

Different concentration exponents (Equation 4) 
are in many cases a consequence of different types 
of solute-dislocation interactions. If one 
component causes a long-range, e.g. Snoek inter- 
action, and the other component causes a short- 
range, e.g. Fleischer interaction, then the total 
ternary SSH is additive according to Equation 1 
[10]. However, when the different components 
cause interactions oi" the same nature, as is 
assumed in the computer simulation model by 
Ono [4], the following treatment is proposed. 

Again a statistical distribution j is taken as 
fictitious reference distribution: 

zXr~ = RjqqJ. (26) 

The following equivalent concentrations of solute 
atoms/" are defined: 

Ceqji = (Ri~l/qJcqi/q j 
\ R  j /  

i =  1 . . . P .  

(27) 

it follows that: From Equations 4 and 27 

A r  i = RjCq~ji i = 1 . . . p .  (28) 

If it is assumed that the total strengthening is 
caused by (Ceqjl + �9 . �9 Ceqiv) atoms j, it follows 
that: 

A r  = R j  Ceqji �9 (29) 

Combining Equations 4, 27 and 29: 

AT" = R1/q.icqi/qJ (30) 

A r  = [~i A'ri/qJ]q{ (31) 

Equation 31 shows that in the case of different 
concentration exponents, the equivalency principle 
does not lead to a univocal expression. Indeed, the 
total strengthening effect is not dependent on the 
strengthening coefficient Rj, but it does depend on 
the concentration exponent qj of the reference dis- 
tribution. It is therefore proposed to define qj as a 
weighted average: 

ZqiA~'i 
i (32) 

qi -- ~i A7  i 

The set of h Equations 31 and 32 is in agree- 
ment with boundary conditions such as are dis- 
cussed in Section 5. No boundary conditions have 
been found for which these relations do not hold. 

In the more general case where the total binary 
SSH of the v distributions is given by Equation 33, 
we propose that the total multi-component SSH is 
given by Equations 34 and 35: 

AT"i = Ki  Cni + Pi (T ,  ~[')C mi i = 1 �9 . .  v 
(33) 

Ar = Ar + Azi* ltmz (34) 
with 

NniArui  
i 

nj - 2. rui 

and 

~,.miAT* 
l 

ml - (35) ~.zxV 

4. Interactions between solutes 
In many solid solutions, the assumption of statisti- 
cal distributions breaks down, mainly at low tem- 
peratures. For example, Sagues and Gibala [11], 
when studying O and N anelasticity in T a - R e - N  
and T a - R e - O  alloys, identified single N atoms, 
ReN pairs, Re2N triplets, single O atoms and 
RexO clusters, withx = 1 to 3. 

Consider a solid solution with v statistical dis- 
tributions i. Suppose the elements v and w form 
pairs vw. Ci is the total atomic fraction of element 
i present in the alloy. C; is the concentration of 
single atoms i and C'w is the concentration of 
pairs vw. The athermal or thermal binary SSH is 
assumed to be given by Equation 2. The SSH due 
to C[ solute atoms i will then be: 

A t ;  = R i C ;  q i = 1 . . .  v ,  w . . . ~ .  (36) 

The SSH due to the vw pairs is here assumed to be 
given by: 

A r ' w  = RvwCvqw (37) 

The following relations can be stated: 

C; = C~ i = 1 . . . ~  (38) 

except v and w 

C; = Cv --  C'w (39) 

c "  = cu~ - c ' ~ .  ( 40 )  
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According to Hasson and Arsenault [12], the 
concentration of vw pairs is related to the 
concentration of single atoms v and w by: 

Gw - mow G G  exp(&Gow/RT). (41) 
mvmw 

where m is the multiplicity of orientations of a 
component and AGou, is the molar free energy of 
the binding of the vw pair. AGvw can be deter- 
mined by internal friction studies. For a given 
temperature Equation 4t is simplified to: 

CO',, = SC'C" and S constant. (42) 

Equations 39, 40 and 42 form a set of three 
independent equations from which Co', C" and 
COw can be calculated. 

The total strengthening effect can now be 
thought to be due to (v + 1) statistical distributions 
and according to Equation 24 is given by: 

a r  = ( a r l / q  + . . .  ar'o ~/q + a,vw-'l/q 

+ arw- ,1/q + . . .  ar~/q)q. (43) 

In the special case of a ternary alloy with C'w << 
Co and C'w << Cw, Equation 43 is reduced to: 

Ar = ( aG  + ~ C l G  + v c 2 )  q. (44) 

with cq 3 and 3' independent of C1 and C2. 
Analogous equations can be derived for the 

cases where (1) the strengthening effects are both 
thermal and athermal, (2) more than one or more 
complex clusters are present, (3) the concentration 
exponents for the different elements and for the 
clusters are different. 

5. Discussion 
The agreement of the proposed model with 
previously reported calculations of the multi- 
component SSH (Table I) is considered first. The 
model is in contradiction with Equations 8 and 10 
of Foreman and Mankin. However, their computer 
simulation model (1) is only valid for point 
obstacles [2], and (2) assumes a crossing mechanism 
which is only valid for a linear array of obstacles 
[13]. 

The model is also in contradiction with the 
multi-component SSH Equations 7, 11, 13 and 14. 
However, these equations can only be valid in 
special cases and break down in other conditions, 
e.g. (Ari = RiC~ is assumed). 
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Equation7: i fq  = �89 = C2 andR1 > 2 . 4  
R2, then Ar < zXzl (45) 

Equation 11: if C1 = C2 andR2/R1 ~ 0, then, 
Az ~ x/2Arl > Azl (46) 

Equation 13: if q - ~ and 6"1 = C2 and fol = fo2 
and wl > 7w2, then Az < Arl (47) 

Equation 14: i fq  = 1 and f01 = Nfo2 and C1 
= C2/N a a n d N >  3, then A t <  Arl 

(48) 

On the other hand, the model is in agreement 
with the other equations of Table I, i.e. Equation 
5 (only if q = 1), Equation 6 of Koppenaal and 
Kuhlmann-Wilsdorf [5], Equation 9 of Foreman 
and Makin [6], Equation 12 derived using the 
Labusch method [2], and also with Equation 25 
of  Mizia and Koss [9]. 

Equations describing the multi-component SSH 
when interactions between solutes occur, or when 
solutes have different concentration exponents, 
have not been found in the literature. The 
equations of Section 3, unlike those of Sections 2 
and 4, have not been completely derived from the 
model, as an assumption had to be made concern- 
ing the concentration exponent of the reference 
distribution. However, no boundary conditions 
similar to those just discussed for Equations 7, 11, 
13 and 14 have been found where these equations 
break down. 

Equation 23 is a rather complex expression 
with 2 (v + 1) parameters. However, this equation 
reduces to Equation 24 with only half the number 
of parameters when (1) n = m = 1, (2) n = m and 
Pi/Ki constant, (3) A% >> At* or At ,  << At*. 

From Equation 24 it can be concluded that for 
a mixture of distributions of solute atoms without 
interactions but with a common concentration 
exponent q, the total strengthening effect can be 
smaller than, equal to or greater than the sum of 
the separate strengthening effects. 

] 9 
Ar = Arff q N Ari if q = 1 

q > l  

According to Equation 43, either a supplemen- 
tary hardening or a softening can be caused by 
interactions between different solute atoms. Such 
interactions are responsible for extrinsic alloy 
softening in group VA metals [14]. Attempts to 
make quantitative calculations of this type of solid 
solution softening can be made by using the for- 



mulae o f  Sect ion 4, whereas relations,  describing 

intrinsic mu l t i - componen t  solid solut ion softening,  

will be given elsewhere [ 15] .  

The present  mode l  is in agreement  wi th  exper-  

imenta l  results for Pb-, Cu-, V-, Nb- and Ta-base 

ternary alloys,  as shown in Part 2 [16] .  
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